
1

NEURAL NETS FOR MESH ASSESSMENT

Saeed Iqbal 1 and Graham .F. Carey 2

1Department of Electrical Engineering, University of Texas at Austin, Austin, Texas, U.S.A., iqbal@ece.utexas.edu,
2TICAM, University of Texas at Austin, Austin, Texas, U.S.A., carey@cfdlab.ae.utexas.edu.

ABSTRACT

We investigate the construction, training and application of a neural net for assessing element shape quality of practical
unstructured grids arising in mesh generation, adaptive refinement and moving grid applications. Results of numerical
experiments are included to validate the process and demonstrate performance of the neural net for both triangulations in 2D and
tetrahedral tessellation in 3D.
Keywords: Adaptive mesh refinement, Finite element shape quality, Neural nets.

1. INTRODUCTION

Mesh generation techniques on practical domains will lead to
cells of varying shape and size. It is also desirable to grade or
adaptively refine and coarsen the mesh in finite element and
finite volume simulation [14]. An adaptive mesh is
particularly important in three-dimensional boundary value
problems discretized by finite element or finite volume
methods, because the problem size and computational cost
grow very rapidly under uniform refinement [13,14].
However, the accuracy and computational reliability and
efficiency may be compromised if the elements in the
unstructured grid are of “poor geometric quality”. Moreover,
in explicit time integration of transient problems, poor
element shape can seriously reduce time-step size [16], which
in-turn increases the CPU time to complete a simulation.
Finally, in Lagrangian calculations and similar formulations
that involve changing geometry and moving meshes the local
element deformation can limit the range of viable
simulations.

Hence, a key question in mesh generation, mesh refinement
and moving mesh schemes is assessment of the shape quality
of elements. This is a topic of increasing concern in large
scale simulations with automatic grid generation and
refinement algorithms and even more so when dealing with
deforming moving grids. Several metrics have been proposed
to be used as indicators of cell shape quality [16] but it is
clear that any single indicator can provide only a very limited
perspective. One can, of course, combine several such
indicators, to obtain a more robust approach and use ideas
from multi-objective optimization with weights specified by
the analyst for a given class of problems. Another novel
approach would be to train a neural net using a number of
metrics for cell quality and have the net then assess the cell
quality level in practical grids. In the present work we
explore the use of neural nets in this context.

We emphasize, however, that assessment of the mesh shape
quality is but one example where neural nets might be put to
acceptable use in evaluating a system or structure. A similar

notion could be applied to the error indicators commonly
used to guide mesh refinement indicators for model
reliability, indicators for structural damage, pattern
recognition and similar “quality measures”. For example the
neural net could be trained to refine or coarsen a grid based
on a number of a posteriori error indicators. However, as a
cautionary note we mention that the neural net would be less
advisable in applications where failure of the net to produce a
precise discrimination could lead to catastrophic breakdown
of the subsequent simulation. Such a situation could arise in
the boundary value problem setting if a few poor elements
were admitted by the net and this led to an ill conditioned
system or punitive step-size restriction. Other applications
such as interpolation on irregular grids typically are less
sensitive and the net can be applied more confidently.
Clearly, there are many other problems involving decision
making where training a net on computationally intensive
tasks and then using the neural net for system assessment will
be even more effective.

In the next section we briefly summarize some of the key
steps in the evolution of neural nets and then proceed to
describe their application to mesh quality assessment.

2. HISTORICAL BACKGROUND

In 1943 McCulloch and Pitts [1] suggested a way to model
events in the nervous system, and showed that a large number
of very simple elements can be combined to make a network
that can in principle, compute any computable function. This
influenced work by Von Neumann to idealize some
components mentioned in the paper and use them in the
design of the EDVAC (Electronic Discrete Variable
Automatic Computer) [30]. Later, in “The Organization of
Behavior” Hebb [2] suggested a learning rule for synaptic
modification. This rule is now the basis of many learning
algorithms and has had a profound effect on the way machine
learning systems were designed. In particular, neural nets
were studied in the context of learning, adaptive systems,
stability, and information theory [2]. For example, Rochester
et. al. [3] used computer simulation to test Hebb’s rule and
there were several subsequent attempts by others to simulate

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Neural Nets for Mesh Assessment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
DOD High Performance Computing Modernization Program
Ofc,Programming Environment & Training (PET),1010 North Glebee
Road Suite 510,Arlington,VA,22201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
We investigate the construction, training and application of a neural net for assessing element shape
quality of practical unstructured grids arising in mesh generation, adaptive refinement and moving grid
applications. Results of numerical experiments are included to validate the process and demonstrate
performance of the neural net for both triangulations in 2D and tetrahedral tessellation in 3D.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

neural nets. Minsky’s classic paper, “Steps Toward Artificial
Intelligence” [4] introduced neural nets, similar to those used
today. Following this, Rosenblatt[5] introduced a new
approach to pattern recognition called the perceptron and
showed an important convergence property. This motivated
further activity among the research community.

For the first time trainable networks were being exploited,
and it was thought that neural nets were universally
applicable for problem solving. However, in 1969, Minsky
and Papert [6] formally showed a fundamental limitation of
single layer perceptrons. Later Hopfield networks [7] used
the idea of energy functions to explain new ways of
understanding computation. Several key developments
occurred in the theory and understanding of learning systems:
Kohonen [8] presented the idea of self-organizing maps;
Ackley, Hinton and Sejnowski [9] used simulated annealing
to develop a learning machine and showed that it was
possible to build complex learning machines; Rumelhart,
Hinton, and Williams [10], reported a computationally
efficient learning algorithm for neural networks, called back
propagation. This back propagation strategy is the most
popular learning algorithm in use today. Mead[29],
described a number of concepts combining ideas from
neurobiology and VLSI technology.

Linsker [22] suggested the Infomax principle which applies
information theory to model neural net behavior. This work
was further extended by Bell and Sejnowski [23] . They and
others, used information theoretic models for solving a broad
class of problems [22]. For example, Broomhead and Lowe
[24] proposed a new way to design multi-layered feedforward
networks using radial basis functions(RBF) as an alternative
to multilayered perceptrons. Subsequently, Vapnik [25, 26]
designed a new kind of learning network called support
vector machines and suggested using the so-called Vapnik-
Chervonenkis (VC) dimension of a training data set to
estimate the capacity of a neural net to learn efficiently from
the data. Freeman [27] studied neuron activity and used
chaos theory to describe emergence of self-organizing
activity patterns in populations of neurons [12]. The
accelerated advances in computer resources and increasing
complexity of applications are motivating a renewed interest
in neural nets. In the present work we explore the use of
multilayered perceptron neural nets for mesh quality
assessment.

3. NEURAL NET ARCHITECTURE

Neural nets or multi-layered perceptrons are connected layers
of neurons and may be “trained” to learn specific concepts
from examples. Basically, there are four key parameters that
characterize a neural net architecture: (1) the number of layers,
(2) the number of neurons in each layer, (3) the kind of
connectivity among layers and (4) the kind of activation
function used within each neuron.

A neural net can in principle have any number of layers with
each layer having a number of neurons. The most common
neural net architecture is comprised of 3 layers: The first layer
called the input layer, a second layer called the hidden layer

and the third layer called the output layer. In figure 1, we show
a simple 3-layered neural net. A neural net has k-l-m
architecture if it has k neurons in the first, l neurons in the
second and m neurons in the third layer.

Figure 1: A multi-layered perceptron: Three vertical
layers of neurons.

Usually, the number of neurons in the first layer is equal to
the number of features (or inputs) available in data. The
number of neurons in the output layer is at least one. In the
present work the output neuron corresponds to a single
quality metric. The number of neurons in the middle layer
needs to be adjusted during training. Usually, there is a trade-
off between accuracy of classification and number of neurons
in the middle layer. Complex classification tasks require a
large number of middle layer neurons. Connectivity among
layers can be full or partial. If each neuron in a layer is
connected to each neuron in the next layer it is called a fully
connected architecture. We use a fully connected architecture
in our study.

Figure 2: The functionality of a single neuron is
represented by a circular region: A weighted sum of the
inputs to the neuron is calculated and this sum is used
as input to a nonlinear activation function which
generates the output.

 Layer 1 Layer 2 Layer 3
 (Input) (Hidden) (Output)

Non
Linear
Activation
Function

w1

w2

w3

Output

Input

3

The behavior of each neuron is controlled by an activation
function, which controls the output of the particular neuron.
The nonlinear nature of the activation function is the key to
the neural net capabilities. The most common activation
function is the sigmoid:

)exp(1
1

)(
x

xy
−+

=

where y is the output of the neuron, x is the weighted sum of
all its inputs. (The weights are determined during training.
The sigmoid has a continuous derivative and gives closed form
expressions for weights calculation during training [12]). The
functionality of a single neuron is shown in Figure 2. A
weighted sum of inputs from the neurons in the previous
vertical layer is computed and transformed by a non-linear
activation function to an output. The weights wi in Figure 2
are determined by the training process.

During the training process we divide all available data related
to a problem into two equal sets, namely a “training set” and
“test set”, by random selection. Note that a portion (20-40%)
of the training set is typically used for checking convergence
of the neural net weights during training. We refer to this
portion of the training set, as the “convergence set”.

Before a neural net is useful it has to go through a training
process. Training is the adjustments of weights to learn to
classify accurately. Neural nets are trained by incrementally
modifying the weights of connections between neurons
according to a learning algorithm. Neural nets are trained by
repeated exposure to training set patterns. Training is a
computationally expensive process that requires some
judgment for selection of training parameters and neural net
architecture. The most popular training algorithm is called
back propagation [1,2] and proceeds as follows:

1. Initially the weights are assigned at random.
2 . A number of training examples are “shown” to the

neural net.
3. The output of the network is compared to the desired

output and the difference between the actual output and
the desired output is the error.

4 . The total mean square error for the entire training
example is calculated and the error is propagated
“backwards” i.e. from the output layer to the input
layer. Along the way, connection weights are adjusted to
reduce the total mean square error.

The computational cost of training grows nonlinearly with
the number of layers and number of neurons (assuming the
neural network is fully connected).

The aim of training is to minimize the total mean square error
of the training set without over-fitting. The total mean square
error is defined as follows:

∑∑
= =

=
N

n

O

i
RMS ine

N
Error

1 1

2),(
1

where N is the number of patterns, O is the number of neurons
in the output layer, and e(n,i) is the error of neuron of the
output layer when the nth pattern is applied to the input layer.
The error at a particular output neuron is defined as the
difference between the output value of the neuron and the
desired value (supplied with the training set pattern). Usually,
during training the value of the total mean square error of the
training set and convergence set decreases. The decrease is
rapid during the initial training, but converges to a value after
a number of iterations. Over-fitting occurs when the total mean
square error of the convergence set starts to increase. The
training of a neural net is stopped when the total mean square
error of the convergence set is a minimum. The corresponding
total mean square error of the training set determines the
accuracy of the neural net. If the accuracy of the neural net is
not acceptable we have to modify its architecture and/or
learning algorithm parameters to achieve higher accuracy.

Assuming that a neural net achieved has the desired accuracy,
it can be used to classify unseen patterns. The features of the
unseen pattern are applied to the input layer. Inputs to each
neuron in the first layer are transformed by an activation
function and transmitted to the neurons in the next layer and so
on. The output from this trained neural net is the assessment of
the input based on the training. In this study, neural nets are
trained as 2-class classifiers, i.e., when the input pattern
corresponding to a particular finite element is “shown” to the
trained neural net it will classify it into one of the two classes
(acceptable or unacceptable). The performance of the classifier
is judged by considering the number of true positive, true
negative, false positive and false negative classification cases.
True positive are elements of acceptable quality classified as
“acceptable”; similarly true negative are elements of
unacceptable quality classified as “unacceptable”. False
positive are elements of unacceptable quality misclassified as
“acceptable ”, and false negatives are elements of acceptable
quality misclassified as “unacceptable”. An ideal classifier
should have a zero false positive and false negative count.

4. APPLICATION TO ELEMENT QUALITY

Our treatment and numerical experiments here are confined
to shape quality of the triangle and tetrahedron but the
extension to other criteria and types of cells is immediate.
There are several measures of element quality (degeneracy)
suggested for simplices in the literature: See, for instance,
Carey and Plaza[13], Whitehead[15], Stynes[17], Levin[18],
Conti et. al. [19], Knupp [28] and Liu and Joe [20,21]. Most
of these criteria are based explicitly on geometric concepts
as one might expect. We have approached the problem of
qualitative assessment from the machine learning point of
view. Given a metric such as the ratio of the inscribed sphere
radius to the circumsphere radius as a basis for determining
“acceptable elements”, how can we train and apply a neural
net to judge the quality of any given mesh ? More
importantly, since there are a number of popular metrics that
are individually in use, can a neural net be applied
competitively to assess mesh quality based on training with
these several metrics? This latter approach affords a broader
assessment than a single metric and would be closer in some
sense to the assessment an analyst would make by inspection.

4

4.1 A SIMPLE EXAMPLE

Let us first use the simple ratio metric to illustrate the training
process and then subsequently carry out more extensive
training and tests with a combination of several metrics.
Consider any nondegenerate triangle and let R be the radius
of its circumcircle. For convenience, translate the circle so
that its center is at the origin . Next, scale the coordinates so
that the transformed circle has unit radius (Figure 3). The
ratio metric (or any other metric) can be applied to the
resulting triangle for a specified quality tolerance as
acceptable or to be rejected.

 (x1, y1)

(x3, y3)

 (x2, y2)

Figure 3: A triangle scaled and translated in a unit
circle. The coordinates of the triangle are used to
calculate input features to the neural net.

|x1 - x2|

|x1 - x3|

|x3 - x2|

|y1 - y2|

|y1 - y3|

|y3 - y2|

Figure 4: A 6-8-1 fully connected neural net is used to
judge the quality of a triangle. Transformed coordinates
are used as input.

We generate 5000 triangles by connecting random triples of
points on a unit circle, and assess the quality of triangles by
calculating the ratio of inscribed to circumcircle circle. All
triangles with the ratio of inscribed circle to the circumcircle

Figure 5: Decrease in the RMS error training during the
training.

Exact Ratio:-

0.497

Neural Net:-

Acceptable

Exact Ratio:-

0.286

Neural Net:-

Acceptable

 Exact Ratio:-

 0.117

 Neural Net:-

 Rejected

Figure 6: The output of the neural net on some
examples from the data set.

less than 0.15 are classified as “rejected” else it is classified
as “acceptable ”. This data is then divided into two equal sets
of 2500 each. The first set is called the “training set” and is
used for training various neural nets. The second is the “test

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

5

set”. After training, a 3 layer 6-8-1 network shown in
Figure 4 is selected. The RMS error during training using
back propagation is illustrated by the Figure 5. The decrease
in the RMS error rate is not uniform because parameters of
the learning algorithm are interactively changed during the
training. In this case the neural net achieved a high accuracy
after 10000 iterations. Finally, after adequate training the net
can be used to assess elements in the test set.

Results after assessing the test set show that the trained
neural net can assess 98% of the triangles of the test set
“correctly”. Three triangles from the test set are shown in
Figure 6, along with the exact ratio metric and classification
by the neural net.

4.2 A MULTIPLE METRIC 2D EXAMPLE

Consider again a set of 10000 triangles generated by
connecting random triples of points on a unit circle. Next, we
select following four simple quality criteria:

1. Minimum side length Smin > 0.55
2. Minimum angle θmin > 0.4 radians
3. Maximum angle θmax<2.7 radians
4. Area Amin> π/15

These values correspond to the average of the entire data set.
To qualify as a acceptable triangle an element must now meet
all the above criteria. Based on the combined four criteria
3463 triangles were classified as acceptable and 6537
triangles failed to satisfy one or more of the criteria
mentioned above, hence were rejected.

The data set divided into two equal sets namely, training set
and test set. The combined data now can be viewed as a
standard 2-class problem with 6 input features.

Several neural nets were trained, on the 5000 triangles
training set data, having different numbers of hidden layer
neurons. The architecture of 6 input, 8 hidden and 4 output
nodes was selected, because it offered a combination of high
accuracy and low neuron count. The performance of the
classifier is shown in Tables 1 and 2. Figure 7 below shows
the RMS error of the training set. Table 1 shows an overall
accuracy of above 97%. Table 2 shows the details of the
classifier performance.

Table 1: Combined four criterion on the randomly
generated 2D data set

Combined performance on three criteria
Metrics Neural NetElements

Accep
t

Reject Accep
t

Reject
% Correct

5000 2618 2382 2614 2386 97.84

Table 2: Performance of Neural net as a 2-class
classifier.

2-Class Classification Performance
True FalseElements

Positive Negative Positive Negative
5000 2321 2553 61 65

Figure 7: RMS error of the training data set 2D case.

4.3 MULTIPLE METRICS 3D EXAMPLE

To train a neural net for tetrahedron quality judgement,
10000 random tetrahedra were simailarly generated, by
repeatedly selecting four points at random on a unit sphere.
The following three quality criteria where selected:

1. Minimum side length Smin< 0.45
2. Distance of centroid to any surface D < 0.075
3. Volume of element Vmin< 0.05

These 10000 tetrahedra are divided into equal groups of
training and test data sets. After training several neural nets,
the neural net architecture with 18 input units, 9 middle layer
units and 3 output units corresponding to the three quality
criteria, is selected. Convergence took 30000 iterations as
shown Figure 8 below. The performance of the neural net is
shown in Table 3 and 4. Table 3 shows an overall accuracy of
above 85%. The classifier accuracy is less compared to the
previous case because (1) assessment of a 3D element is
more complex. (2) randomly generating tetrahedron
generate a wide range of elements. Table 4 shows the details
classifier performance

Figure 8: RMS error of the training set 3D case.

Table 3: Performance of Neural net as a 2-class
classifier.

Combined performance on three criteria
Metrics Neural NetElements

Accep
t

Reject Accep
t

Reject
% Correct

5000 1403 3597 1833 3167 85.88

6

Table 4: Performance of Neural net as a 2-class
classifier.

2-Class Classification Performance
True FalseElements

Positive Negative Positive Negative
5000 3029 1265 568 138

4.4 ASSESSING A 2D DEFORMING MESH

The Taylor Anvil problem is a standard benchmark problem
in impact mechanics: a solid cylinder impacts a rigid flat

plate normally and at high velocity. The cylinder deforms and
shock waves propagate through the cylinder. Finite
deformation and plastic flow are significant. In the present
case we consider results from a Lagrangian formulation of
the problem.

Here the mesh deforms as the shape evolves during impact.
Elements in the mesh deform and the timestep of the
calculation is reduced as element quality degenerates.
Moreover in our Lagrangian analysis algorithm the mesh can
be modified adaptively based on local error analysis and
shape quality. Adaptivity is based on a point insertion and
element removal algorithm. Since the problem is symmetric it
can be solved for a symmetric 2D mesh of triangle elements.
The initial domain is discretised as a uniform triangulation of
891 elements for the symmetric cylinder.

In this study we take the element data corresponding to the
evolving Lagrangian grid at 30 different times (stages) during
the impact simulation history, and combine them to make a
large data set. Next we sample the large data set and
randomly selected 2700 triangles for training. We apply the
following four criteria to assess element quality:

1. Minimum Side Length < 0.80
2. Minimum Angle < 0.45 radians
3. Maximum Angle > 2.25 radians
4. Area of Triangle < 0.30

A 6-10-4 architecture showed best accuracy and low neuron
count. This trained neural net is used to assess element
quality on each of the 30 stages. The results are shown in
Tables 5 and 6. A pictorial view of the assessment the mesh
is shown for stage 30 is shown in Figure 9. Here the
elements in the figure are color mapped according to the
combined quality criteria.

4.5 ASSESSING A 3D ADAPTIVELY REFINED
DOMAIN

In this case we consider an adaptive mesh refinement
example from [13]. The geometry is fixed as an L shaped
domain, but the tetrahedral mesh adapts with the transient
solution on the domain. The adapted mesh at 14 distinct time
stages was taken for input data sets and tested with a neural
net.

Table 5: Combined four criterion on the Taylor Anvil
problem.

Combined performance on four criteria
Metrics Neural NetStage Elements

Accep
t

Rej
ect

Acce
pt

Reject
%

Correct

1 891 879 12 879 12 99.78
2 891 879 12 879 12 99.78
3 891 879 12 881 10 99.33
4 1012 994 18 994 18 98.42
5 1011 987 24 987 24 98.62
6 1011 986 25 989 22 98.52
7 1315 1286 29 1288 27 98.78
8 1423 1391 32 1381 42 97.89
9 1423 1381 42 1369 54 97.33
10 1506 1452 54 1436 70 97.74
11 1506 1438 68 1426 80 98.14
12 1543 1467 76 1456 87 98.12
13 1543 1456 87 1449 94 97.73
14 1540 1441 99 1439 101 97.14
15 1540 1438 102 1430 110 96.62
16 1611 1490 121 1490 121 96.52
17 1699 1559 140 1561 138 96.82
18 1698 1580 118 1581 117 96.88
19 1698 1439 259 1465 233 96.58
20 1698 1301 397 1332 366 93.93
21 1694 1446 248 1478 216 93.27
22 1694 1274 420 1338 356 91.74
23 1691 1314 377 1398 293 90.42
24 1803 1354 449 1441 362 91.18
25 1799 1401 398 1490 309 91.05
26 2013 1502 511 1580 433 91.75
27 2134 1494 640 1596 538 91.85
28 2134 1631 503 1762 372 90.86
29 2134 1531 603 1665 469 91.28
30 2142 1456 686 1599 543 90.15

The training set is made of 3500 randomly selected
tetrahedra from all 14 stages. These are translated and scaled
in a unit sphere, and assessed for quality using the following
3 criteria:

1. Minimum side length Smin< 0.75
2. Distance of centroid to any surface D < 0.1
3. Volume of element Vmin< 0.175

An element in the domain is considered unacceptable if any
of the above is true. We now carry out a multi-metric training
procedure with simple metrics and specified several
tolerances. We emphasize that these metrics are not chosen
with the idea that they are best in any sense. On the contrary,
the point of the exercise is to demonstrate by example.
Hence, we have deliberately chosen simple primitives for the
training. An 18-9-3 architecture neural net is used to assess
the quality of elements in all 14 stages. Performance results
are shown in Tables 7 and 8.

7

Figure 9: Comparison of element quality predicted by
the neural net and exact calculation at stage 30. The
figure on the top is based on exact calculation and the
bottom figure shows the shape quality as it is predicted
by the neural net.

Table 6: Performance of Neural net as a 2-class
classifier.

2-Class Classification Performance
True FalseStage Total

Positive Negative Positive Negative

1 891 878 11 1 1
2 891 878 11 1 1
3 891 877 8 4 2
4 1012 986 10 8 8
5 1011 980 17 7 7

6 1011 980 16 9 6
7 1315 1279 20 9 7
8 1423 1371 22 10 20
9 1423 1356 29 13 25
10 1506 1427 45 9 25
11 1506 1418 60 8 20
12 1543 1447 67 9 20
13 1543 1435 73 14 21
14 1540 1418 78 21 23
15 1540 1408 80 22 30
16 1611 1462 93 28 28
17 1699 1533 112 28 26
18 1698 1554 91 27 26
19 1698 1423 217 42 16
20 1698 1265 330 67 36
21 1694 1405 175 73 41
22 1694 1236 318 102 38
23 1691 1275 254 123 39
24 1803 1318 326 123 36
25 1799 1365 273 125 36
26 2013 1458 389 122 44
27 2134 1458 502 138 36
28 2134 1599 340 163 32
29 2134 1505 443 160 26
30 2142 1422 509 177 34

Table 7: Combined three criteria on the L-shaped
domain.

Combined performance on three criteria
Metrics Neural NetStage Elements

Accep
t

Rej
ect

Acce
pt

Reject
%

Correct

1 128 122 6 122 6 100.00
2 3238 3094 144 3085 153 99.16
3 1680 1653 27 1650 30 99.82
4 3298 3153 145 3157 141 99.75
5 1905 1850 55 1848 57 99.89

6 6104 5386 718 5378 726 97.74
7 2547 2391 156 2360 187 98.62
8 4811 4369 442 4352 459 98.98
9 1088 1070 18 1070 18 100.00
10 2434 2281 153 2270 164 98.89
11 1439 1366 73 1370 69 99.40
12 4145 3519 626 3509 636 95.94
13 2171 1900 271 1864 307 97.23
14 3017 2661 356 2624 393 97.71

8

Table 8: Performance of Neural net as a 2-class
classifier.

2-Class Classification Performance
True FalseStage Total

Positive Negative Positive Negative
1 128 122 6 0 0
2 3238 3076 135 9 18
3 1680 1650 27 0 3
4 3298 3151 139 6 2
5 1905 1848 55 0 2

6 6104 5313 653 65 73
7 2547 2358 154 2 33
8 4811 4336 426 16 33
9 1088 1070 18 0 0
10 2434 2262 145 8 19
11 1439 1364 67 6 2
12 4145 3430 547 79 89
13 2171 1852 259 12 48
14 3017 2608 340 16 53

5.CONCLUSIONS

In this study we have investigated some aspects of training
and application of neural nets to mesh quality assessment. As
noted in the introduction this should be prefaced by the
cautionary remark that the net may not detect all poor
elements and therefore this approach will be of limited value
in certain applications. Further, for the simple metrics
considered here the net does not provide any significant
saving in CPU time on current serial processors. However, it
is competitive on the simple multi-metric cases considered in
the numerical experiments. The value of the neural net may
lie in other applications where the cost of the metric
evaluation is more expensive and where the cost of training
can be more easily amortized over many assessments.
Nevertheless, the approach does look interesting in several
respects even in the simple mesh quality context. For
instance, training can be with respect to a number of different
metrics which will lead to more robust meshes and this has
been an issue of interest to the meshing community where a
variety of shape quality metrics have been proposed.
Furthermore, other criteria can be introduced related to mesh
smoothing as seen in the experiments and one can possibly
apply the ideas in guiding mesh refinement based on a
number of error/feature indicators. Finally, the net may be a
tool for evaluating error indicators in adaptive strategies.

ACKNOWLEDGEMENTS

We express our thanks to J. P. Suárez and A. Plaza for
providing the mesh for the L shaped domain and to David
Littlefield for the 2D Taylor anvil mesh sequence. This
research has been supported by ASCI Contract #B347883,
DoD PET Contract NRC-CR-97-0002 and State of Texas
Advanced Technology Program #0904.

REFERENCES

[1] McCulloch, W. S., and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bulletin of
Mathematical Biophysics, 1943.

[2] Hebb. D. O. The Organization of Behavior: A
Neuropsychological Theory, New York: Wiley 1949.

[3] Rochester, N., J. H. Holland, L. H. Habit, and W. L.
Duda, Tests on a cell assembly theory of the action of the
brain, using a large digital computer, IRE Transactions on
information Theory, vol. IT-2, pp. 80-93.

[4] Minsky, M.L., Steps towards artificial intelligence,
Proceedings of the Institute of Radio Engineers, vol. 49,
pp. 8-30, 1961.

[5] Rosenblatt, F., The Perceptron: A probabilistic model
for information storage and organization in the brain,
Psychological Review, vol. 65, pp. 386-408, 1958

[6] Minsky, M.L. and S. A. Papert, Perceptrons, MIT Press
Cambridge, MA 1969.

[7] Hopfield, J. J., Neural networks and physical systems
with emergent collective computational abilities,
Proceeding of the National Academy of Sciences, USA,
vol. 79, pp. 2554-2558, 1982.

[8] Kohonen, T., Self-organized formation of topologically
correct feature maps, Biological Cybernetics, vol. 43, pp.
59-69, 1982.

[9] Ackley, D. H., G. E. Hinton, and T. J. Sejnowski, A
learning Algorithm for Boltzmann Machines, cognitive
science, vol. 9, pp. 147-169, 1985.

[10] Rumelhart, D.E., G. E. Hinton, and R. J. Williams,
Learning representations of back-propagation errors,
Nature (London), vol. 323, pp. 533-536, 1986.

[11] Tom M. Mitchell, Machine Learning, McGraw-Hill
Companies, Inc. 1997.

[12] Simon Haykin, Neural Networks a comprehensive
foundation. Prentice-Hall, Inc. New Jersey 1999.

[13] G. F. Carey, A. Plaza, Local refinement of simplicial
grids based on the skeleton. Applied Numerical Math.,
32(2000), pp. 195-218.

[14] G.F.Carey, Computational Grids: Generation,
Refinement, and Solution Strategies, Taylor and Francis,
1997.

[15] J.H.C Whitehead, On C1-Complexes, Ann. Math
41(1940) 809-824.

[16] Abani K. Patra, Atanas Pehlivanov, David Littlefield,
Graham Carey and J. Tinsley, Error and Shape Impact
Solution.

[17] M. Stynes, On faster convergence of the bisection
method for all triangles, Math. Comp. 35 (1980) 1995-

9

1201. Quality Indicators for Adaptive Refinement of
Deforming Finite Elements with Application to
Lagrangian.

[18] M. C. Rivara, C. Levin, A 3D refinement algorithm
suitable for adaptive and multi-grid techniques, J.
Computational. Appl. Math. 8 (1992) 281-290.

[19] P. Conti, N. Hitschfeld, W. Fichtner, Ω-an octree-based
mixed element grid allocator for simulation of complex
3D device structures, IEEE Trans. Comput. Aided
design 10 (1991) 1231-1241.

[20] A. Liu, B. Joe, Relationship between tetrahedron shape
measures, BIT 34 (1994) 268-287.

[21] A. Liu, B. Joe. On the shape of tetrahedra from
bisection, Math. Comp. 63 (1994) 141-154.

[22] Linsker, R., Towards an organizing principle for a
layered perceptual network, in Neural Information
Processing Systems, D.Z. Anderson, ed., pp.485-494,
New york: American Institute of Physics, 1988.

[23] Bell, A.J., and T. J. Sejnowski, An informative-
maximization approach to blind separation and blind
deconvolution, Neural computation, vol. 6, pp. 1129-
1159, 1995.

[24] Broomhead, D.S., and D. Lowe, Multivariable functional
interpolation and adaptive networks, complex systems,
vol. 2, pp. 321-355, 1988.

[25] Vapnik, V. N., The Nature of statistical learning theory,
New York: Springer-Verlag 1995.

[26] Vapnik, V. N., Principles of risk minimization for
learning theory, Advances in Neural Information
Processing Systems, vol. 4, pp. 831-838, San Mateo,
CA: Morgan Kaufmann, 1992.

[27] Freeman, W. J., Societies of Brains, Hillsdale, NJ:
Lawrence Erlbaum 1995.

[28] Knupp, P. Achieving Finite Element Mesh quality via
optimization of the Jacobian Matrix and associated
quantities, in press, 2000.

[29] Mead, C. A., Analog VLSI and Neural Systems,
Reading, MA, Addison-Wesley 1989.

[30] Aspray, W., A. Burks, Papers of John von Neumann on
Computing and Computer Theory, Charles Babbage
Institute Reprint Series for the History of Computing,
vol. 12. Cambridge, MA: MIT Press, 1986.

